An Empirical Comparison and Feature Reduction Performance Analysis of Intrusion Detection

نویسنده

  • Yogendra Kumar Jain
چکیده

This paper reports on the empirical evaluation of five machine learning algorithm such as J48, BayesNet, OneR, NB and ZeroR using ten performance criteria: accuracy, precision, recall, F-Measure, incorrectly classified instances, kappa statistic, mean absolute error, root mean squared error, relative absolute error, root relative squared error. The aim of this paper is to find out which classifier is better in its performance for intrusion detection system. Machine Learning is one of the methods used in the intrusion detection system (IDS).Based on this study, it can be concluded that J48 decision tree is the most suitable associated algorithm than the other four algorithms. In this paper we compared the performance of Intrusion Detection System (IDS) Classifiers using seven feature reduction techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

Intrusion Detection based on a Novel Hybrid Learning Approach

Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...

متن کامل

Performance Comparison of Intrusion Detection System Classifiers Using Various Feature Reduction Techniques

In this paper, we compare the performance of Intrusion Detection System Classifiers using various feature reduction techniques. To enhance the learning capabilities and reduce the computational intensity of competitive learning neural network classifiers, different dimension reduction techniques have been proposed. These include: Principal Component Analysis, Linear Discriminant Analysis, Indep...

متن کامل

Improving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering

Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012